
PRE-DECISIONAL DRAFT; For planning and discussion purposes only 1
6/16/2017

Mars Science Laboratory

F`Software Framework
A Small Scale Component Framework for Space

Jet Propulsion Laboratory,

California Institute of Technology

5/29/2017

© 2009-2017 California Institute of Technology. Government sponsorship acknowledged. 

Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, 

under a contract with the National Aeronautics and Space Administration. 

This software has been approved for open source release under NTR #49404.



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 2

CALIFORNIA INSTITUTE OF TECHNOLOGY

Background

• F` was developed as part of a technology task at JPL

– Explore new flight hardware

– Explore new software approaches

– Targeted at smaller projects like instruments, Cubesats, and Smallsats

– Sparser processor resources (e.g. 2MB memory, 128K program space)

• TI MSP430, ARM-M*, LEON3

– Clusters of interconnected processors

• Goals were to show:

2

Goal Explanation

Reusability Frameworks and adaptations readily reusable

Modularity Decoupled and easy to reassemble

Testability Components easily isolated for testing

Adaptability Should be adaptable to new contexts and bridge to inherited

Portability Should be portable to new architectures and platforms

Usability Should be easily understood and used by customers

Configurability Facilities in the architecture should be scalable and configurable

Performance Architecture should perform well in resource constrained 

contexts. Should be very compact.



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 3

CALIFORNIA INSTITUTE OF TECHNOLOGY

F`: A Component Architecture

• Definition: The F` Component Architecture is a design pattern based on an architectural 

concept combined with a software architectural framework.

• Not just the concepts, but framework classes and tools are provided for the 

developer/adapter.

• Implies patterns of usages as well as constraints on usage.

• Centered around the concept of “components” and “ports”

• Uses code generation to produce code to implement common framework logic

– Developer specifies in XML

• Developer writes implementation classes to implement interfaces.

3

1 2

3
1 2

3

1 2

3

1 2

3

= some state

machine in the component



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 4

CALIFORNIA INSTITUTE OF TECHNOLOGY

Characteristics of Components

• Encapsulates behavior

• Components are not aware of 
other components

• Localized to one compute 
context

• Interfaces are via strongly 
typed ports

– Ports are formally specified 
interfaces

– No direct calls to other 
components

• Context for threads

• Executes commands and 
produces telemetry

Component

1
2

3

Port 1 Port 2

4



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 5

CALIFORNIA INSTITUTE OF TECHNOLOGY

Characteristics of Ports

• Encapsulates typed interfaces in the architecture.

– Think C++ class with one interface method

• Point of interconnection in the architecture.

• Ports are directional; there are input and output ports

– Direction is direction of invocation, not necessarily data 

flow. Ports can retrieve data.

• Ports can connect to 3 things:

– Another typed port

• Call is made to method on attached port

– A component

• Incoming port calls call component provided callback

– A serialized port

• Port serializes call and passes as data buffer (more 

to come)

• All arguments in the interface are serializable, or convertible to a 

data buffer. There are built-in types supported by the framework; 

user can write custom types. (see later slides).

• Ports can have return values, but that limits use

– Only return data when component has synchronous 

interface

– No serializable connections since serialization passes a 

data buffer but does not return one (see later slides for 

explanation)

• Pointers/references allowed for performance reasons

• Multiple output ports can be connected to a single input port

Component

1
2

3

serialize()

5



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 6

CALIFORNIA INSTITUTE OF TECHNOLOGY

A Component Topology

6

Component 1

1
2

3

Port 1 Port 2

Component 2

1
2

3

Port 1 Port 2

Component 3

1
2

3

Port 1 Port 2

• Components are instantiated at run 

time

• They are then connected via ports into 

a Topology, or a specific set of 

interconnected components

• There are no code dependencies 

between components, just 

dependencies on port interface types

• Alternate implementations can easily 

be swapped

– E.g. simulation versions



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 7

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Type Hierarchy

7

• Hierarchy consists of:

• core framework 

classes

• generated classes that 

implement architecture 

features

• Developer written 

classes that implement 

interfaces and project-

specific logic



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 8

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Types

• User specifies type of component in XML. Types are:

• Passive Component

– No thread

– Port interface calls are made directly to user derived class methods

• Queued Component

– No thread

– A queue is instantiated, and asynchronous port calls are serialized and placed on 

queue.

– Implementation class makes call to base class to dispatch calls to implementation 

class methods for asynchronous ports

• Can be made from any implementation class function

• Thread of execution provided by caller to a synchronous port

• Active Component

– Component has thread of execution as well as queue

– Thread dispatches port calls from queue as it executes based on thread scheduler

• Calls to output port are on thread of implementation functions

– Thread making call is dependent on port type (see next slide)

8



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 9

CALIFORNIA INSTITUTE OF TECHNOLOGY

Port Characteristics

• The way incoming port calls are handled is 

specified by the component XML.

• Input ports can have three attributes:

– Synchronous – port calls directly invoke derived 

functions without passing through queue

– Guarded – port calls directly invoke derived 

functions, but only after locking a mutex shared 

by all guarded ports in component

– Asynchronous – port calls are placed in a queue 

and dispatched on thread emptying the queue.

• A passive component can have synchronous 

and guarded ports, but no asynchronous ports 

since there is no queue. Calls execute on the 

thread of the calling component.

• A queued component can have all three port 

types, but it needs at least one synchronous 

or guarded port to unload the queue and at 

least one asynchronous port for the queue to 

make sense. 

• An active component can have all three 

varieties, but needs at least one 

asynchronous port for the queue and thread to 

make sense.

• Designer needs to be aware of how all the 

different call kinds interact (e.g. reentrancy)

• Output ports are invoked by calling generated 

base class functions from the implementation 

class.

Page 9

Code Generated Active Base 

Classfunc1()

virtual func1()=0

Developer Written Implementation Class

func1() {…

func4()

}

Task
Asynchronous

func2()

func2() {…}

Synchronous

func3()

func3() {…}

Guarded

func4()



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 10

CALIFORNIA INSTITUTE OF TECHNOLOGY

Serialization

• Serialization is a key concept in the framework

• Definition: Taking a specific set of typed values or function arguments and 

converting them in an architecture-independent way into a data buffer

• Port calls and commands and their arguments are serialized and placed on 

message queues in components

• Command arguments and telemetry values are passed and encoded/decoded 

into this form

• Components that store and pass data can use this form and not require 

knowledge of underlying types

• User can define arbitrary interface argument types and framework 

automatically serializes

• User can define complex types in XML and code generator will generate 

classes that are serializable for use internally and to and from ground software

10



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 11

CALIFORNIA INSTITUTE OF TECHNOLOGY

Serialization Ports

• A special optional port that handles serialized 

buffers

• Takes as input a serialized buffer when it is an 

input port, and outputs a serialized buffer when 

it is an output port.

• Can be connected to *any* typed port (almost).

– For input port, calling port detects connection and 

serializes arguments

– For output port, serialized port calls interface on 

typed port that deserializes arguments

– Not supported for ports with return types

• Useful for generic storage and communication 

components that don’t need to know type

– Allows design and implementation of C&DH 

(command and data handling) components that 

can be reused.

11

Comp1

Comp2

Typed port

Serialized port

Comp3

Serialized port

Typed port



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 12

CALIFORNIA INSTITUTE OF TECHNOLOGY

Commands, Telemetry, Events and Parameters

• The code generator provides a method of implementing commands, 

telemetry, events (AKA EVRs), and parameters.

• Component XML specifies arguments and types.

• Data for service is passed in serialized form.

• The code generator parses arguments and types and generates code 

to convert arguments to serialized data or vice versa.

• Calls implementation functions with deserialized arguments 

(commands) or provides base class functions to implement calls 

(telemetry, events and parameters)

• Code generator uses port types that are specified in XML themselves. 

These ports can be then used in components that provide interfaces 

for transporting or storing data for those services.

– Since data is handled in serialized form, don’t need to know specific 

argument types

12



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 13

CALIFORNIA INSTITUTE OF TECHNOLOGY

Commands

• Component command XML specifies:

– Opcode, mnemonic, and arguments

• Arguments can be any built-in type or external XML complex type

• Complex type can be a single argument

• Can define enumerations

– Synchronization attribute

• Sync, async, or guarded

• Same meaning as ports

– Async can specify message priority

• Implementation class implements function for each command

– Framework code deserializes arguments from argument data buffer

• Autocoder automatically adds ports for registering commands, receiving 

commands and reporting an execution status.

13



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 14

CALIFORNIA INSTITUTE OF TECHNOLOGY

Events

• Component event XML specifies:

– ID, name, severity and arguments

• Arguments can be any built-in type or XML complex type

• Complex type can be a single argument

• Can define enumerations

– Format specifier string

• Used by ground software and optional on-board console to display message with 

argument values

• Follows C format specifier syntax

• Code generated base class provides function to call for each event with typed 

arguments
– Provides stronger type checking at compile time than MER/MSL EVR macros

– Called by implementation class

• Code generator automatically adds ports for retrieving time tag and sending 

event
– Two independent ports for sending events

• A binary version with serialized arguments for transport to ground software

• A text port that sends a string version of the event (using the format specifier) that can be sent to a 

console

– Can be globally disabled via architecture configuration macros to save execution time and code space

14



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 15

CALIFORNIA INSTITUTE OF TECHNOLOGY

Telemetry

• Component telemetry XML specifies channels that have:

– ID, name, and data type

• Data type can be any built-in type or external XML complex type

• Can define enumerations

– Format specifier string

• Used by ground software and optional on-board console to display message with 

argument values

• Code generated base class provides function to call for each channel with 

typed argument

– Called by implementation class

• Code generator automatically adds ports for retrieving time tag and sending 

channelized data

15



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 16

CALIFORNIA INSTITUTE OF TECHNOLOGY

Parameters

• Parameters are traditional means of storing non-volatile state

– Framework provides code generation to manage, but user must write specific 

storage component

• Component XML specifies parameters that have:

– ID, name, and data type

• Data type can be any built-in type or external XML complex type

• Can define enumerations

– Optional default value

• In the event the parameter cannot be retrieved, assigns default value to parameter

• Code generator automatically adds port for retrieving parameters

• During initialization, a public method in the class is called that retrieves the 

parameters and stores copies locally

– Can be called again if parameter is updated

• Code generated base class provides function to call for each parameter to 

retrieve stored copy

– Implementation class can call whenever parameter value is needed

16



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 17

CALIFORNIA INSTITUTE OF TECHNOLOGY

Architectural patterns

• Over time, tested C&DH components can be developed that implement typical 

non-mission-specific flight functions that are specified in the XML
– Commands, Events, Telemetry, Parameters

• Design them so small-scale projects can live with sufficient implementations out of the 

box

• Includes:

– Command dispatcher

– Command sequencer

– Event log (binary and console)

– Telemetry database

– File-based parameter storage and updating

– Active rate groups

• Define interfaces for facilities that would support the existing component 

implementations

– Uplink/Downlink packet types

• Input/Output of ground system and C&DH components

– Uplink/Downlink ports

• Project would have specific uplink downlink hardware

17



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 18

CALIFORNIA INSTITUTE OF TECHNOLOGY

Example Component Pattern - Rate Group

• Rate group is a 

container of run() 

ports.

• Calls ports in order

• Since is a list of run 

ports, doesn’t know 

(or care) which 

destinations are in 

active components 

or not

• Rate Group is an 

active component

Page 18

Rate

Group

run()

run()

active

run()

…
.

run()

run()



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 19

CALIFORNIA INSTITUTE OF TECHNOLOGY

Example Component Pattern - Command Dispatcher

• Command dispatcher receives raw buffer containing command and arguments

• Command opcode is extracted, and lookup is made
– Table maps opcode to port

– Multiple opcode entries per component

• Argument buffer is passed to component

• Command dispatcher is a passive component

Page 19

Dispatcher Mod1

ModN

OC

command

register

status

buffer

status



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 20

CALIFORNIA INSTITUTE OF TECHNOLOGY

Example Component Pattern - Command Sequencer

• Command sequencer loads file from file system

• Sends command and waits for response for each command in the file

• A failed response terminates the sequence, passed response moves to the next 

command

• Active component

Page 20

Dispatcher

1. command

Sequencer

File

2. status



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 21

CALIFORNIA INSTITUTE OF TECHNOLOGY

Example Component Pattern – Event Log

• Component implementation calls function to generate event

• Base class function (code-generated) retrieves time tag from time source 

component (project-specific).

• Component sends event to Event Log component

• Event log component places event on message queue. Thread of component then 

sends downlink packet with event

• Active component

Page 21

Component

3. event
Event Log

Time

Component

2. time

Msg Q4. downlink

1. event()



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 22

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Pattern – Telemetry Database

• Telemetry database has double-buffered array of telemetry buffers

• Implementation class calls base class function with telemetry channel update

• Base class function retrieves time tag from time source component.

• Component writes updated value to telemetry database component

• Telemetry database writes value to active buffer

• Run port is called periodically by rate group. Swaps active buffer

• Run call copies updated values to downlink

• Passive component

Page 22

Telemetry Database Component

3. value

Time

Component

2. time

1. write()

run

downlink



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 23

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Pattern – Parameter Manager

• Parameter Manager loads file containing parameters from file system during 

initialization

• Initialization subsequently calls loadParameters() on all components with 

parameters. Can also be called after 

• Uplinked parameter updates update the stored value of parameter

• Component can refresh parameters by implementing command to reload

• Manager can save updated values to file system via command

Page 23

Component

get parameter

Parameter Manager

File

loadParameters()

update



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 24

CALIFORNIA INSTITUTE OF TECHNOLOGY

Multi-node

• Hub pattern

– Hub is a component with multiple serialization input and output ports

– Typed ports on calling components are connected to serialized ports (see earlier 

slides)

– Each hub instance is responsible for connecting to a remote node

– Input port calls are repeated to corresponding output ports on remote hub

– Single point of connection to remote node, so central point of configuration for 

transport.

Node 1

Producer

Component1

Transport (Socket, ARINC Channel, UART, IPC)

Node 2

Consumer

Component1
Hub Hub

Consumer

Component2

Producer

Component2

24



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 25

CALIFORNIA INSTITUTE OF TECHNOLOGY

Code Scaling

• Framework code is very compact

• Generated code is also compact

– Demo application for TI microcontroller was about 15K

• Native type sizes can be configured

– e.g. some microcontrollers have 16-bit/8-bit only support

• Features can be added or removed depending on resources

– Object naming

– Port execution tracing

– Serialization of ports

• Single node systems don’t really need

• This is not data serialization but the use of serialized ports

– Object naming/registry

– Component connection tracing

– Text logging

• For very compact processors with no OS, developers can choose non-active 

components

25



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 26

CALIFORNIA INSTITUTE OF TECHNOLOGY

Status

• Framework released as open source

• Earlier JPL version flown on RapidScat, an ISS radar experiment

• Has been ported to:

– Linux, MacOS, Windows (Cygwin), VxWorks, ARINC 653, RTEMS, Bare Metal (No OS)

– PPC, Leon3, x86, ARM (A15/A7), MSP430 

• Mature set of C&DH components

– Following flight processes such as code inspections, static analysis, and full-coverage unit 

testing

• Version being developed as companion for JPL hardware project for Cubesat missions

– Will include platform driver components and other peripherals

• Available on JPL GitHub:

– https://github.jpl.nasa.gov/FPRIME/fprime-sw.git

• Hubs demonstrated on:

– Sockets

– ARINC 653 Channels

– High-speed hardware bus between nodes

– UARTs between nodes in an embedded system

26


